Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, R. Souam, E. Toubiana
Email des responsables :
Salle : salle 2015
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) Rafael PONTE - Université Gustave Eiffel, IMPA,
Titre Minimal surfaces of finite total curvature in M2 × R
Date24/02/2020
Horaire13:30 à 15:00
Diffusion
Résume

Minimal surfaces with finite total curvature in three-dimensional spaces have been widely studied in the recent decades. A celebrated result in this subject states that, if Σ ⊂ R R3 is a complete immersed minimal surface of finite total curvature, then it has finite conformal type. Moreover, its Weierstrass data can be extended meromorphically to the punctures and its total curvature is an integral multiple of 4π..

In this talk, the goal is to present some theorems concerning minimal surfaces in M2 × R, having finite total curvature, where M2 is a Hadamard manifold. We obtain analogous versions of classical results in Euclidean three-dimensional spaces. The main result gives a formula to compute the total curvature in terms of topological, geometrical and conformal data of the minimal surface. In particular, we prove the total curvature is an integral multiple of 2π.

Sallesalle 2015
AdresseSophie Germain
© IMJ-PRG