Séminaires : Séminaire de Topologie LAGA/IMJ-PRG

Equipe(s) : tga,
Responsables :Catherine Gille, Geoffroy Horel et Najib Idrissi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description

Un plan d’accès est disponible ici.

Pour vous inscrire à la liste de diffusion du séminaire, veuillez vous rendre à cette adresse.

L'université étant actuellement fermée, le séminaire a lieu en ligne. Pour y assister, rendez-vous sur cette page. Pas besoin d'installer un logiciel ; tout passe par le navigateur. La salle sera ouverte un quart d'heure avant le séminaire. Quand vous rejoignez la salle, pensez à choisir l'option « microphone », quitte à vous mettre en sourdine immédiatement : si vous choisissez le mode « écoute seule », vous ne pourrez pas activer votre microphone plus tard et vous ne pourrez poser des questions que par texte.

Le séminaire est actuellement mutualisé entre l'équipe Topologie Algébrique du LAGA (org. : Geoffroy Horel) et l'équipe Topologie & Géométrique Algébriques de l'IMJ-PRG (org. : Catherine Gille et Najib Idrissi).


Orateur(s) Miradain Atontsa Nguemo - Université catholique de Louvain,
Titre Calcul de Goodwillie : Caractérisation des foncteurs polynomiaux
Date28/04/2020
Horaire10:30 à 11:30
Diffusion
Résume
Le calcul de Goodwillie peut se voir comme la catégorification du calcul classique de Newton et Leibniz. Plus précisément, il consiste à approximer un foncteur $F : C \to D$ par une  suite $\{P_nF : C \to D \}_n$ de foncteurs "polynomiaux". Tout comme les séries de Taylor, $P_n F$ est exprimé (en partie) à base des "dérivées" $d_1 F, \dots, d_n F$. De façon classique, Goodwillie et collaborateurs ont développé cette théorie dans le cas où $C$ et $D$ sont chacun soit la catégorie des espaces topologiques, soit la catégorie des spectres. Dans cet exposé, je vais étendre ces constructions dans le cas des complexes de chaines et des algèbres de Lie différentielles graduées (DGL). Je montrerais ensuite que dans ce contexte purement algébrique, la suite des dérivées $d_* F = \{ d_n F \}$ a une structure de module à droite sur l'opérade de Lie, qui permet de retrouver la tour de Taylor $\{ P_n F : C \to D \}$.
Sallehttps://bigbluebutton.imj-prg.fr/b/naj-9rw-nzw
AdresseSophie Germain
© IMJ-PRG