| Equipe(s) : | ao, |
| Responsables : | Pierre Fima, Romain Tessera |
| Email des responsables : | |
| Salle : | 1013 |
| Adresse : | Sophie Germain |
| Description |
| Orateur(s) | László Márton Tóth - , |
| Titre | Invariant Schreier decorations on unimodular random graphs |
| Date | 28/05/2020 |
| Horaire | 14:00 à 15:00 |
| |
| Diffusion | |
| Résume | It is a nice exercise in combinatorics to show that all finite 2d-regular graphs are Schreier graphs of the free group on d generators. We will consider the analogous question in the world of Benjamini-Schramm convergence of sparse graphs.
We show that any 2d-regular unimodular random network can be given an invariant random Schreier structure. Equivalently, every 2d-regular graphing is a local isomorphic image of a graphing coming from a probability measure preserving action of the free goup.
Voici l'enregistrement de l'exposé.
|
| Salle | 1013 |
| Adresse | Sophie Germain |