 
    		| Equipe(s) : | ao, | 
| Responsables : | Pierre Fima, Romain Tessera | 
| Email des responsables : | |
| Salle : | 1013 | 
| Adresse : | Sophie Germain | 
| Description | 
| Orateur(s) | László Márton Tóth - , | 
| Titre | Invariant Schreier decorations on unimodular random graphs | 
| Date | 28/05/2020 | 
| Horaire | 14:00 à 15:00 | 
|   | |
| Diffusion | |
| Résume | It is a nice exercise in combinatorics to show that all finite 2d-regular graphs are Schreier graphs of the free group on d generators. We will consider the analogous question in the world of Benjamini-Schramm convergence of sparse graphs.  We show that any 2d-regular unimodular random network can be given an invariant random Schreier structure. Equivalently, every 2d-regular graphing is a local isomorphic image of a graphing coming from a probability measure preserving action of the free goup.  Voici l'enregistrement de l'exposé. | 
| Salle | 1013 | 
| Adresse | Sophie Germain |