Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, J. Cao, I. Itenberg, X. Ma
Email des responsables : olivier.biquard@sorbonne-universite.fr
Salle : Barre 15-25, 5ème étage, salle 02
Adresse :Campus Pierre et Marie Curie
Description

Le séminaire d'analyse et géométrie reprend au mois de mai sous forme électronique et en partenariat avec le séminaire sur l'opérateur de Dirac de Jean-Michel Bismut à Orsay.
Les exposés auront lieu le mercredi,sur le format environ 1H d'exposé/questions/environ 1/2H de compléments.


Orateur(s) Jan Swoboda - Université de Heidelberg,
Titre Moduli spaces of parabolic Higgs bundles: their ends structure and asymptotic geometry
Date03/06/2020
Horaire16:00 à 17:00
Diffusion
Résume

Moduli spaces of Higgs bundles are mathematical objects which are of interest from various points of view: as holomorphic objects, generalizing the concept of holomorphic structures on vector bundles, as topological objects, relating to surface group representations, and as analytic objects which admit a description through a nonlinear PDE. In my talk, I will mostly take up this latter point of view and give an introduction to Higgs bundles on Riemann surfaces both in the smooth and the parabolic setting. In the parabolic case, i.e. in the situation where the Higgs bundles are permitted to have poles in a discrete set of points, I will discuss recent joint work with L. Fredrickson, R. Mazzeo and H. Weiß concerning the asymptotic geometric structure of their moduli spaces. Here the focus lies on the hyperkähler metric these spaces are naturally equipped with. One implication of a recent conjectural picture due to Gaiotto-Moore-Neitzke suggests that this metric is asymptotic to a so-called semiflat model metric which comes from the description of the moduli space as a completely integrable system. We shall also discuss several open questions in the case where the Riemann surface is a four-punctured sphere and these moduli spaces turn out to be gravitational instantons of type ALG.

SalleL'exposé, organisé en commun avec le séminaire d'Orsay, se fera en utilisant Zoom et pour le suivre, il faut s'inscrire auprès d'Olivier Biquard
AdresseZoom'
© IMJ-PRG