Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, A. Deruelle, I. Itenberg, X. Ma
Email des responsables : {olivier.biquard, alix.deruelle, ilia.itenberg, xiaonan.ma}@imj-prg.fr
Salle : Barre 15-25, 5ème étage, salle 02
Adresse :Campus Pierre et Marie Curie
Description

Orateur(s) François Labourie - ,
Titre Plateau problems for maximal surfaces in pseudo-hyperbolic spaces
Date24/06/2020
Horaire16:00 à 17:00
Diffusion
Résume

The pseudo-hyperbolic space H^{2,n} is in many ways a generalisation of the hyperbolic space. It is a pseudo-Riemannian manifold with signature

(2,n) with constant curvature, it also has a « boundary at infinity ».

We explain in this joint work with  Jérémy Toulisse and Mike Wolf how special curves in this boundary at infinity, bounds unique maximal surfaces in H^{2,n}. The result bears some analogy with the Cheng-Yau existence results for affine spheres tangent to convex curves in the projective plane. The talk will spend sometime explainig the geometry of the pseudo-hyperbolic space and its boundary at infinity, as well as description of maximal surfaces. If time permits, I will explain some extension to « quasi-periodic » maximal surfaces in H^{2,n}.

SalleL'exposé, organisé en commun avec le séminaire d'Orsay, se fera en utilisant Zoom et pour le suivre, il faut s'inscrire auprès d'Olivier Biquard
AdresseZoom
© IMJ-PRG