Séminaires : Séminaire d'Algèbres d'Opérateurs

Equipe(s) : ao,
Responsables :Pierre Fima, François Le Maître, Romain Tessera
Email des responsables :
Salle : 2015
Adresse :Sophie Germain
Description

Orateur(s) Gabor Elek - Lancaster University,
Titre Uniform hyperfiniteness
Date22/10/2020
Horaire14:00 à 15:00
Diffusion https://bigbluebutton3.imj-prg.fr/b/fra-j6k-9fw
RésumeUniform hyperfiniteness is a strong version of hyperfiniteness, which can be defined for both infinite graphs and measured graphs. It turns out that in the case of infinite graphs, uniform hyperfiniteness is equivalent to Property A. This fact leads to a positive answer of a conjecture of Brodzki et. al. about the equivalence of Property A and Uniform Local Amenability. For measured graphs, we have a uniform version of the Connes-Feldman-Weiss Theorem. I will present some proofs and several, hopefully interesting, examples.
Salle2015
AdresseSophie Germain
© IMJ-PRG