Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : https://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) Andrea SEPPI - CNRS, Grenoble,
Titre Affine deformations of quasi-divisible convex cones
Date16/11/2020
Horaire13:30 à 15:00
Diffusion
RésumeIn this talk we will study the geometry of affine deformations of discrete subgroups of SL(3,R) that quasi-divide a proper convex cone, that is, subgroups obtained by adding a translation part in R3. We give a suitable notion of regular domain, generalizing the work of Mess in Minkowski space, and classify the regular domains invariant under the action of such affine deformation. Moreover we show that each such regular domain is uniquely foliated by convex surfaces of constant affine Gaussian curvature, extending a result of Barbot-Béguin-Zeghib. This is joint work with Xin Nie.
Sallehttps://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
AdresseSophie Germain
© IMJ-PRG