Résume | Soient F un corps local, G un groupe réductif connexe déployé
sur F et H l’algèbre de Hecke de G(F) associée à un sous-groupe de
Iwahori, à coefficients dans le corps C des nombres complexes. Soit
d’autre part \hat{G} le dual de Langlands de G sur C. Kazhdan et Lusztig
ont montré que les H-modules simples pouvaient être réalisés en famille,
dans le groupe de Grothendieck des fibrés vectoriels équivariants sur la
variété de drapeaux de \hat{G}, et que cette famille vivait au-dessus
d’un espace de paramètres de Langlands modérés. Dans un travail en
commun avec Tobias Schmidt, nous cherchons un analogue de cette théorie
lorsque le corps C des coefficients est remplacé par une clôture
algébrique du corps résiduel de F. On arrive pour l’instant à une
réponse assez complète lorsque G=GL_2.
Exposé sur zoom
https://us04web.zoom.us/j/76485706476?pwd=L1dhMFZ1T1VPdCswdEV2dk9sNjRsdz09
ID de réunion : 764 8570 6476
Code secret : 5WsfPp |