Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ

Orateur(s) Ke Zhang - Toronto,
Titre Uniform Lyapunov exponents for Hamilton-Jacobi equations at the vanishing viscosity limit
Horaire14:00 à 15:45
RésumeIt is well known that the viscous Hamilton-Jacobi equation on a compact domain converges exponentially fast to a stationary solution. (For example, Sinai proved this for a random potential on the torus in the late 80s). However, the a priori exponent decreases to 0 as the vicosity decreases to 0. We will show that in the simple case of a single well potential, there is a uniform lower bound for this exponent. The same method should also apply to the random potential case. Another equivalent interpretation is that the spectral gap associated with the statistical mechanics model does not vanish in the zero temperature limit. This is a joint work with Konstantin Khanin and Lei Zhang.
AdresseCampus Pierre et Marie Curie