Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : https://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
Adresse :Sophie Germain
Description

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 

 


Orateur(s) Artur SATURNINO - University of Pennsylvania,
Titre On the genus and area of constant mean curvature surfaces with bounded index
Date29/03/2021
Horaire15:00 à 16:30
Diffusion
RésumeConstant mean curvature (CMC) surfaces are critical points of the area functional for volume-preserving variations. The index of a CMC surface is a natural variational quantity which, in essence, is the cardinality of a maximal set of independent volume-preserving variations which decrease surface area to second degree. There is a rich relationship between the index and the geometry/topology of CMC surfaces. In this talk we will use blow-up arguments to explore this relationship for closed CMC surfaces embedded in closed 3-manifolds. More specifically, we will show that in a closed 3-manifold the index together with the area of a CMC surface control its genus, and in a spherical 3-manifold the index of a CMC surface controls its area and its genus.
Sallehttps://bbb-front.math.univ-paris-diderot.fr/recherche/pau-6ha-of4-mea
AdresseSophie Germain
© IMJ-PRG