Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, A. Deruelle, I. Itenberg, X. Ma
Email des responsables : {olivier.biquard, alix.deruelle, ilia.itenberg, xiaonan.ma}@imj-prg.fr
Salle : Demander le lien Zoom à olivier.biquard@sorbonne-universite.fr
Adresse :demande
Description

Orateur(s) Duong Phong - Columbia University,
Titre Geometric Partial Differential Equations from Unified String Theories
Date05/05/2021
Horaire15:45 à 17:00
Diffusion
RésumeThe laws of nature at its fundamental level have long been a source of inspiration for geometry and partial differential equations. With unified string theories and particularly supersymmetry, a particularly important new requirement has emerged, which is that of special holonomy. The earliest manifestation was identified by Candelas, Horowitz, Strominger, and Witten in 1985 as the Calabi-Yau condition, but more general spaces have emerged since, that can be interpreted as generalizations of the Calabi-Yau condition to both non-Kähler complex geometry and symplectic geometry. The corresponding equations are interesting in their own right from the point of view of the theory of non-linear partial differential equations. We shall survey some of these developments, with emphasis on the analytic open problems
SalleDemander le lien Zoom à olivier.biquard@sorbonne-universite.fr
Adressedemande
© IMJ-PRG