Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : ZOOM ID 857 3353 2552 (code : 666061)
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Sébastien Biebler - IMJ-PRG,
Titre Blenders and almost blenders
Date18/06/2021
Horaire14:00 à 15:45
Diffusion
RésumeA blender is a hyperbolic basic set with very special fractal properties: its unstable set intersects in a robust way any perturbation of a submanifold of dimension lower than its stable dimension. Introduced by Bonatti and Díaz in the 90s, blenders turned out to have many powerful applications to differentiable dynamics: construction of persistent nonhyperbolic transitive diffeomorphisms, density of stable ergodicity, Newhouse phenomenon, the existence of generic families displaying robustly infinitely many sinks, robust bifurcations in complex dynamics, fast growth of the number of periodic points... In this talk, I will explain how to construct blenders and use them to solve some of these questions. I will also introduce a recent generalization from a measurable point of view, called almost blenders.
SalleZOOM ID 857 3353 2552 (code : 666061)
AdresseCampus Pierre et Marie Curie
© IMJ-PRG