Séminaires : Séminaire Groupes Réductifs et Formes Automorphes

Equipe(s) : fa, tn,
Responsables :Alexis Bouthier, Benoît Stroh, Cong Xue
Email des responsables : alexis.bouthier@imj-prg.fr, benoit.stroh@imj-prg.fr, cong.xue@imj-prg.fr
Salle :
Adresse :
Description

Orateur(s) David LOEFFLER - Warwick,
Titre Euler systems and the BSD conjecture for abelian surfaces
Date07/10/2021
Horaire14:00 à 15:30
Diffusion
RésumeEuler systems are one of the most powerful tools for proving cases of the Bloch--Kato conjecture, and other related problems such as the Birch and Swinnerton-Dyer conjecture. I will recall a series of recent works (variously joint with Pilloni, Skinner, and Zerbes) giving rise to an Euler system in the cohomology of Shimura varieties for GSp(4), and an explicit reciprocity law relating this to values of L-functions; and I will explain work in progress with Zerbes, in which we use this Euler system to prove new cases of the BSD conjecture for modular abelian surfaces over Q, and modular elliptic curves over imaginary quadratic fields.
Salle15-25 502
AdresseJussieu
© IMJ-PRG