Séminaires : Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :Adrien Brochier, Olivier Brunat, Jean-Yves Charbonnel, Olivier Dudas, Daniel Juteau, Emmanuel Letellier, Michela Varagnolo, Eric Vasserot
Email des responsables : adrien.brochier@imj-prg.fr ; olivier.brunat@imj-prg.fr; jean-yves.charbonnel@imj-prg.fr; olivier.dudas@imj-prg.fr; emmanuel.letellier@imj-prg.fr; daniel.juteau@imj-prg.fr; varagnol@math.u-cergy.fr; eric.vasserot@imj-prg.fr
Salle : 1016
Adresse :Sophie Germain
Description Le séminaire de l'équipe GRG. SI vous n'êtes pas membre de l'équipe mais souhaitez recevoir les informations, abonnez vous à la liste sem-gr.paris@services.cnrs.fr

 


Orateur(s) Oscar Kivinen - EPFL,
Titre Title: Coherent sheaves on trigonometric commuting varieties from affine Springer fibers
Date26/11/2021
Horaire10:30 à 12:15
Diffusion
RésumeAffine Springer fibers are moduli spaces whose topology is closely related to orbital integrals on reductive groups, singularities of the Hitchin fibration, and representations of double affine Hecke algebras. The physics of 3d mirror symmetry suggests a certain equivalence of categories of constructible sheaves on a loop Lie algebra and coherent sheaves on a partial resolution of the commuting variety (PRCV), and following the physical heuristics it is possible to distill a particular case of the conjectural equivalence to a mathematical construction of a (quasi-)coherent sheaf on the PRCV, starting from an affine Springer fiber. In the first 45 minutes, I will give an elementary introduction to affine Springer theory, BFN Coulomb branches and related geometry. In the second half of the talk I will introduce the trigonometric commuting variety, as well as explain the main construction and some of its consequences in detail. I will also pose a number of open problems.
Salle1016
AdresseSophie Germain
© IMJ-PRG