Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : 1013
Adresse :Sophie Germain

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG



Orateur(s) Mario SCHULZ - University of Münster,
Titre Minimal hypertori in the four-dimensional sphere
Horaire11:00 à 12:30
RésumeLawson proved that closed surfaces of any orientable topological type can be embedded as a minimal surface in the three-dimensional round sphere. In higher-dimensional spheres however, little is known about the possible topological types of minimal hypersurfaces. We prove that the four-dimensional round sphere contains a minimally embedded hypertorus, as well as infinitely many, pairwise non-isometric, immersed ones. Our analysis also yields infinitely many, pairwise non-isometric, minimally embedded hyperspheres and thus provides a self-contained solution to Chern's spherical Bernstein conjecture in dimension four. Joint work with A Carlotto.
AdresseSophie Germain