Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, A. Deruelle, E. Di Nezza, I. Itenberg, X. Ma
Email des responsables : {olivier.biquard, alix.deruelle, eleonora.dinezza, ilia.itenberg, xiaonan.ma}@imj-prg.fr
Salle : 15–25.502
Adresse :Jussieu
Description

Pour recevoir le programme du séminaire, abonnez-vous à cette lettre mensuelle.
Ce programme est mis à jour en permanence ici et sur cette page même.
     


Orateur(s) Xianghong Gong - University of Wisconsin-Madison,
Titre Global Newlander-Nirenberg theorem for domains with C² boundary
Date09/11/2021
Horaire14:00 à 15:00
Diffusion
RésumeThe Newlander-Nirenberg theorem says that a formally integrable complex structure is locally equivalent to the standard complex structure in the complex Euclidean space. As an application of estimates on homotopy formulas for the $\overline{\partial }$ operator, we consider two generalizations of the Newlander-Nirenberg theorem for domains with strictly pseudoconvex $C^{2}$ boundary. When a given formally integrable complex structure X is defined on the closure of a bounded strictly pseudoconvex domain D in $C^{n}$ with $C^{2}$ boundary, we show the existence of global holomorphic coordinate systems defined on the closure of D that transform X into the standard complex structure provided that X is sufficiently close to the standard complex structure. This extends a result of R. Hamilton for strictly pseudoconvex domains with smooth boundary. Using our result, we then prove the existence of local one-sided holomorphic coordinate systems provided that the boundary is strictly pseudoconvex with respect to the given complex structure. This is joint work with Chun Gan.
Salle15–25.502
AdresseJussieu
© IMJ-PRG