Séminaires : Séminaire sur les Singularités

Equipe(s) : gd,
Responsables :André BELOTTO, Hussein MOURTADA, Matteo RUGGIERO, Bernard TEISSIER
Email des responsables : hussein.mourtada@imj-prg.fr
Salle : salle 2015
Adresse :Sophie Germain
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 


 


Orateur(s) Pino Gomez - Universiteit Utrecht,
Titre Curves tangent to analytic distributions and microflexibility
Date29/11/2021
Horaire10:30 à 12:00
Diffusion ZOOM Meeting ID: 846 0585 9765 Passcode: 966907
RésumeA tangent distribution is a subbundle of the tangent bundle. There is a control theoretical motivation for considering such objects: The manifold represents the possible states of a particle and the distribution represents the admissible directions of motion. Much like metrics, distributions have plenty of local invariants that measure how far the distribution is from being isomorphic to the "flat model". In this case, the flat model is a foliation and the invariants are thus a measure of non-involutivity. In this talk, we will discuss bracket-generating distributions. This means that any vector in the manifold is a linear combination of iterated lie brackets applied to vector fields tangent to the distribution. This condition implies non-involutivity and it says that, infinitesimally, we can use curves tangent to the distribution ("horizontal curves") to move in any direction. Imagine we take a horizontal curve and we vary its endpoint. We may ask whether we can follow this variation by a variation of the curve itself, keeping its initial point fixed. Gromov conjectured that this can always be achieved, but Bryant and Hsu showed that this need not be the case in general. The study of such curves has been a driving problem in SubRiemannian Geometry for the last 30 years.
Sallesalle 2015
AdresseSophie Germain
© IMJ-PRG