| Orateur(s) | Paul Wedrich - Universität Hamburg,
|
| Titre | [K-OS] A skein relation for singular Soergel bimodules |
| Date | 03/02/2022 |
| Horaire | 14:00 à 15:00 |
|
| Diffusion | https://lrobert.perso.math.cnrs.fr/join-kos.html |
| Résume | Soergel bimodules categorify Hecke algebras and lead to invariants of
braids that take values in monoidal triangulated categories. In this
process, the quadratic `skein relation' on Artin generators is
promoted to a distinguished triangle. I will talk about an analog of
this relation in the setting of singular Soergel bimodules and Rickard
complexes, in which the distinguished triangle gets replaced by a
longer one-sided twisted complex. Joint work with M. Hogancamp and
D.E.V. Rose. |
| Salle | 1016 |
| Adresse | Sophie Germain
|