Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers, Silvain Rideau.
Email des responsables : zoe.chatzidakis@imj-prg.fr
Salle :
Adresse :ENS
Description

http://gtm.imj-prg.fr/

 

Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.Retour ligne automatique
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Philipp Hieronymi - Bonn/Fields,
Titre Tameness beyond o-minimality (in expansions of the real ordered additive group)
Date18/03/2022
Horaire15:45 à 17:15
Diffusion
RésumeIn his influential paper “Tameness in expansions of the real field” from the early 2000s, Chris Miller wrote: “ What might it mean for a first-order expansion of the field of real numbers to be tame or well behaved? In recent years, much attention has been paid by model theorists and real-analytic geometers to the o-minimal setting: expansions of the real field in which every definable set has finitely many connected components. But there are expansions of the real field that define sets with infinitely many connected components, yet are tame in some well-defined sense [...]. The analysis of such structures often requires a mixture of model-theoretic, analytic-geometric and descriptive set-theoretic techniques. An underlying idea is that first-order definability, in combination with the field structure, can be used as a tool for determining how complicated is a given set of real numbers.” Much progress has been made since then, and in this talk I will discuss an updated account of this research program. I will consider this program in the larger generality of expansions of the real ordered additive group (rather than just in expansions of the real field as envisioned by Miller). In particular, I will mention in this context recent joint work with Erik Walsberg, in which we produce an interesting tetrachotomy for such expansions.
Salle
AdresseENS
© IMJ-PRG