Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Boris KHESIN - University of Toronto,
Titre Dynamics of pentagram maps
Date13/05/2022
Horaire14:00 à 16:00
Diffusion
Résume

The pentagram map on polygons in the projective plane was introduced
by R. Schwartz in 1992 and is by now one of the most popular and
classical discrete integrable systems. We survey definitions and
integrability properties of the pentagram maps on generic plane
polygons and their generalizations to higher dimensions. In
particular, we define long-diagonal pentagram maps on polygons in
RP^d, encompassing all known integrable cases. We also describe the
corresponding continuous limit of such pentagram maps: in dimension d
is turns out to be the (2, d + 1)-equation of the KdV hierarchy,
generalizing the Boussinesq equation in 2D. This is a joint work with
F.Soloviev and A.Izosimov.

Salle15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG