Séminaires : Séminaire de Géométrie

Equipe(s) : gd,
Responsables :L. Hauswirth, P. Laurain, R. Souam, E. Toubiana
Email des responsables :
Salle : 1013
Adresse :Sophie Germain

Archive avant 2014

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG



Orateur(s) Pablo MIRA - Universidad Politécnica de Cartagena,
Titre Elliptic Weingarten surfaces: an overview
Horaire11:00 à 12:30

A surface in Euclidean 3-space is called a Weingarten surface if its principal curvatures satisfy an equation W(k1,k2)=0. If this equation is elliptic, the surface is called an elliptic Weingarten surface. Particular cases of elliptic Weingarten surfaces are those with constant mean curvature or constant (positive) Gaussian curvature. In this way, elliptic Weingarten surfaces constitute the natural fully nonlinear version of CMC theory. In this talk we will give an overview on the currently available global results on elliptic Weingarten surfaces. These include Alexandrov and Hopf type theorems, Bernstein type theorems, classification of rotational examples, KKMS theory, finite total curvature, halfspace theorems and isolated singularities. We will specially detail some recent results obtained jointly with Isabel Fernandez.

AdresseSophie Germain