Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers
Email des responsables : zoe.chatzidakis@imj-prg.fr
Salle :
Adresse :



Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.Retour ligne automatique
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.

Orateur(s) Alex Wilkie - Oxford,
Titre Integer points on analytic sets
Horaire16:00 à 17:30

In 2004 I proved that that if C is a transcendental curve definable in the structure R_{an}, then the number of points on C with integer coordinates of modulus less than H, is bounded by k loglog H for some constsnt k depending only on C. (The situation is vastly different for rational points.) The proof used the fact that such sets C are, in fact, semi-analytic everywhere-including infinity-and so the crux of the matter was to bound the number of solutions to equations of the form

(*)    F(1/n) = 1/m

for n, m integers bounded in modulus by (large) H, and where F is a non-algebraic, analytic function defined on an open interval containing 0. 
It turns out that there is probably no generalization of the 2004 result for arbitrary R_{an}-definable sets (which need not be globally, or even locally, semi-analytic) but inspired by observations of Gareth Jones and Gal Binyamini, the three of us began looking at equations of the form (*) in many variables and I shall be reporting on our results.