Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - D. Cordero-Erausquin - G. Godefroy - O. Guédon - B. Maurey - G.Pisier
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Terence Tao - U.C.L.A.,
Titre A counterexample to the periodic tiling conjecture
Horaire11:00 à 12:00

The periodic tiling conjecture asserts that any finite subset of a lattice Zd which tiles that lattice by translations, in fact tiles periodically. In this work we disprove this conjecture for sufficiently large d, which also implies a disproof of the corresponding conjecture for Euclidean spaces Rd. In fact, we also obtain a counterexample in a group of the form Z2×G0 for some finite abelian 2-group G0. Our methods rely on encoding a "Sudoku puzzle" whose rows and other non-horizontal lines are constrained to lie in a certain class         of "2-adically structured functions", in terms of certain functional equations that can be encoded in turn as a single tiling equation, and then demonstrating that solutions to this Sudoku puzzle exist but are all non-periodic.

Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie