Equipe(s) : | ao, |
Responsables : | Pierre Fima, François Le Maître, Romain Tessera |
Email des responsables : | |
Salle : | 1013 |
Adresse : | Sophie Germain |
Description |
Orateur(s) | Konrad Wrobel - McGill University, |
Titre | Measure equivalence and wreath products |
Date | 11/05/2023 |
Horaire | 14:00 à 15:00 |
![]() | |
Diffusion | https://greenlight.virtualdata.cloud.math.cnrs.fr/b/fra-pzw-tq2 |
Résume | Measure equivalence is an equivalence relation on the space of groups that was defined by Gromov in the 90's as an analytic analogue of quasi-isometry. Let F be a nonabelian free group. We show that if $L_1$ and $L_2$ are measure equivalent groups, then the wreath products $L_1\wr F$ and $L_2\wr F$ are measure equivalent with index 1. This is joint work with Robin Tucker-Drob.
L'exposé sera à distance mais diffusé en salle RH02A (Buffon). |
Salle | RH02A |
Adresse | Buffon |