Séminaires : Théorie des modèles et groupes

Equipe(s) : lm,
Responsables :Z. Chatzidakis, F. Oger, F. Point
Email des responsables : zoe.chatzidakis@imj-prg.fr
Salle : 1013
Adresse :Salle 1013

Pour recevoir le programme, écrivez à oger_at_math.univ-paris-diderot.fr
Le mardi à 16h00 en salle  1013 (Sophie Germain) - http://semgrp.imj-prg.fr pour plus de renseignements.

Orateur(s) Francesco Gallinaro - Freiburg,
Titre Quasiminimality of complex powers
Horaire16:00 à 17:30

A conjecture due to Zilber predicts that the complex exponential field is quasiminimal: that is, that all subsets of the complex numbers that are definable in the language of rings expanded by a symbol for the complex exponential function are countable or cocountable. Zilber showed that this conjecture would follow from Schanuel's Conjecture and an existential closedness type property asserting that certain systems of exponential-polynomial equations can be solved in the complex numbers; later on, Bays and Kirby were able to remove the dependence on Schanuel's Conjecture, shifting all the focus to the existence of solutions. In this talk, I will discuss recent work about the quasiminimality of a reduct of the complex exponential field, that is, the complex numbers expanded by multivalued power functions. This is joint work with Jonathan Kirby.

AdresseSalle 1013