Séminaires : Groupes, Représentations et Géométrie

Equipe(s) : gr,
Responsables :Adrien Brochier, Olivier Brunat, Jean-Yves Charbonnel, Olivier Dudas, Daniel Juteau, Emmanuel Letellier, Michela Varagnolo, Eric Vasserot
Email des responsables : adrien.brochier@imj-prg.fr ; olivier.brunat@imj-prg.fr; jean-yves.charbonnel@imj-prg.fr; olivier.dudas@imj-prg.fr; emmanuel.letellier@imj-prg.fr; daniel.juteau@imj-prg.fr; varagnol@math.u-cergy.fr; eric.vasserot@imj-prg.fr
Salle : 1016
Adresse :Sophie Germain

Le séminaire de l'équipe GRG. SI vous n'êtes pas membre de l'équipe mais souhaitez recevoir les informations, abonnez vous à la liste https://listes.services.cnrs.fr/wws/info/sem-gr.paris


Orateur(s) Owen Garnier - Amiens,
Titre Garside study of the complex braid group $B(G_{31})$
Horaire10:30 à 12:15

In his proof of the $K(\pi,1)$ conjecture for complex reflection arrangements, Bessis introduced new Garside structures useful for handling irreducible complex braid groups. A particularly tough case to study is that of the Borchardt braid group $B(G_{31})$, for which a Garside category is needed (instead of just a Garside monoid).

In this talk I will explain how to use this Garside category to prove several group-theoretic results on $B(G_{31})$. Some of these results are new, and others were obtained before using non-Garside arguments.

If time permits, I will also give some details regarding the topological construction of this category, and the way it can be used to understand the parabolic subgroups of $B(G_{31})$, as defined by Marin and González-Meneses

AdresseSophie Germain