Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ

Orateur(s) André de Carvalho - ,
Titre What is the closure of the set of pseudo-Anosov maps in Homeo(S)?
Horaire14:00 à 16:00

I don't know the answer to this question, but I find it interesting and have some things to say about it. I'll discuss a one-parameter family within which pseudo-Anosovs (and generalized pseudo-Anosovs) form a countable dense subset, and describe the structure of the remaining maps in the family: they are called measurable pseudo-Anosovs (mpA). I'll also describe a way of taking quotients of surface diffeomorphisms - the 0-entropy equivalence - which, conjecturally, yields a mpA quotient. If the conjecture holds, it would follow from a result of Bonatti-Crovisier that mpAs form a C^1-residual subset of area-preserving surface diffeomorphisms. 

AdresseCampus Pierre et Marie Curie