Séminaires : Séminaire d'Analyse Fonctionnelle

Equipe(s) : af,
Responsables :E. Abakoumov - A.Eskenazis - D. Cordero-Erausquin - M. Fathi - O. Guédon - B. Maurey
Email des responsables :
Salle : salle 13 - couloir 15-16 - 4ème étage
Adresse :Campus Pierre et Marie Curie
Description
Le Jeudi à 10h30 -  IMJ-PRG - 4 place Jussieu - 75005 PARIS

Orateur(s) Patrick Oliveira Santos - Univ. G. Eiffel,
Titre Spectral outliers of inhomogeneous symmetric random matrices
Date14/03/2024
Horaire10:30 à 12:00
Diffusion
Résume

Let $W$ be an $n\times n$ symmetric matrix with i.i.d centered entries and unit variance. The celebrated Wigner's theorem states that the empirical law of eigenvalues of $W/\sqrt{n}$ converges weakly to the semicircle law, a measure supported in $[-2,2]$. For the largest eigenvalue, Bai and Yin showed that it converges to $2$ if and only if the entries of $W$ have a bounded fourth moment, namely, $W$ does not have outliers. In this talk, we explore the universality and stability of Bai-Yin's result under sparsification. In other words, we consider the random matrix $X=\Sigma \circ W$, where $\Sigma$ is a deterministic matrix, and $\circ$ denotes the Hadamard product. We contribute sharp conditions for subgaussian matrices $X$ to have outliers in terms of non-structural parameters of $\Sigma$.
This is a joint work with Dylan Altschuler, Konstantin Tikhomirov, and Pierre Youssef.
 

Sallesalle 13 - couloir 15-16 - 4ème étage
AdresseCampus Pierre et Marie Curie
© IMJ-PRG