Séminaires : Séminaire sur les Singularités

Equipe(s) : gd,
Responsables :André BELOTTO, Hussein MOURTADA, Matteo RUGGIERO, Bernard TEISSIER
Email des responsables : hussein.mourtada@imj-prg.fr
Salle : salle 1013
Adresse :Sophie Germain
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 


 


Orateur(s) Matteo Ruggiero - Université Paris Cité,
Titre Valuative analysis of planar superattracting skew-products
Date19/03/2024
Horaire16:00 à 17:00
Diffusion
Résume

Skew-products are maps of the form f(x,y)=(P(x),Q(x,y)). We are intereste on the situation where P=x^d, and Q is a polynomial in y of degree c >= 2 satisfying d>c.
The germ f induces a tree map f on the valuative tree V_x. By results of Gignac-Ruggiero, all valuations of finite skewness have orbit converging to the eigenvaluation ord_x. Our goal is to describe the set K(f) of valuations (of infinite skewness) whose orbit does not converge to ord_x.
This set K(f) can be reinterpreted as the Julia set of a twisted polynomial map acting on the completion of the field of Puiseux series.
In our situation, we show that if K(f) does not contain critical curves, then it consists of curve semivaluations of uniformly bounded multiplicity.
This is part of a joint project with Romain Dujardin and Charles Favre. 

Sallesalle 1013
AdresseSophie Germain
© IMJ-PRG