Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ

Orateur(s) Douglas Finamore - ,
Titre Estimating the number of closed leaves for contact foliations
Horaire14:00 à 16:00

A contact foliation $(M, \mathcal{F})$ is the orbit foliation of an $\mathbb{R}^q$ action on $M$ which is, in a sense, a high dimensional analogue of the Reeb flow on a contact manifold. Following the Weinstein conjecture for Reeb fields, a natural question emerges: does every contact foliation contain a closed leaf? In this talk, we will see that closed leaves always exist for certain classes of contact foliations, and that their number can be bounded from below using cohomological properties of the foliation itself. 

AdresseCampus Pierre et Marie Curie