Séminaires : Géométrie et Théorie des Modèles

Equipe(s) : lm,
Responsables :Zoé Chatzidakis, Raf Cluckers, Georges Comte, Antoine Ducros, Tamara Servi
Email des responsables : antoine.ducros@imj-prg.fr
Salle :
Adresse :
Description

http://gtm.imj-prg.fr/

 

Pour recevoir le programme par e-mail, écrivez à : antoine.ducros@imj-prg.fr
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici : https://webusers.imj-prg.fr/~zoe.chatzidakis/papiers/MTluminy.dvi/MTluminy.dvi. Ces personnes peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.Retour ligne automatique
Les notes de quelques-uns des exposés sont disponibles.


Orateur(s) Thomas Scanlon - UC Berkeley,
Titre Manin maps. differential algebra, o-minimality, and intermediate Kodaira-Spencer rank
Date24/05/2024
Horaire14:15 à 15:45
Diffusion
Résume

In 1963, Manin used a construction related to the work of Fuchs, Gauss, and Picard on linear differential operators to prove a function field version of the Mordell conjecture about rational points on algebraic curves.  Over the years, Manin's construction has been reinterpreted in various ways , most notably using differential algebra.  Indeed, the analytic presentation is generally regarded as a heuristic, as it was even in Manin's proofs.   I will describe some work (joint with T. Dupuy and J. Freitag)  using o-minimality and differential algebra exploiting the analytic presentation to explain some known properties of the Manin maps (e.g. Manin's theorem of the kernel and the one basedness of Manin kernels of non-isotrivial simple abelian varieties), to produce examples of simple abelian varieties with Manin kernels of intermediate rank, and to show why such examples cannot come from low dimensional families of abelian varieties.

Salle15-16, salle 101
AdresseCampus Pierre et Marie Curie
© IMJ-PRG