Séminaires : Séminaire sur les Singularités

Equipe(s) : gd,
Responsables :André BELOTTO, Hussein MOURTADA, Matteo RUGGIERO, Bernard TEISSIER
Email des responsables : hussein.mourtada@imj-prg.fr
Salle : salle 1013
Adresse :Sophie Germain
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ-PRG

 


 


Orateur(s) Andrei Bengus-Lasnier - ,
Titre Residues and multiplicities for Gorenstein curves
Date11/06/2024
Horaire16:00 à 17:00
Diffusion
Résume

In our talk we will present an adjunction type formula. Given a projective variety $X$ we assume it to be Cohen-Macaulay, so that it has a dualizing sheaf $\omega_X$. Once we chose a complete intersection $Z\subset \mathbb P^n_k$ that contains $X$ as a closed subvariety we have $((0:I_X)\omega_Z)_{|X}=\omega_X$, where $I_X$ is the ideal sheaf defining $X$ inside $Z$. We establish a couple of applications. Chief among them we prove a multiplicity formula for the Milnor number of a Gorenstein curve, with the help of the local version of our adjunction formula. This formula has been previously established for complete intersections and smoothable curves. This is a joint work with Antoni Rangachev.
 

Sallesalle 1013
AdresseSophie Germain
© IMJ-PRG