Séminaires : Séminaire d'Analyse et Géométrie

Equipe(s) :
Responsables :O. Biquard, I. Itenberg, S. Shen, T.-D. Tô
Email des responsables : {olivier.biquard, ilia.itenberg, shu.shen, tat-dat.to}@imj-prg.fr
Salle : 15–25.502
Adresse :Jussieu
Description

Pour recevoir le programme du séminaire, abonnez-vous à cette lettre mensuelle.
Ce programme est mis à jour en permanence ici et sur cette page même.
     


Orateur(s) Alexander Goncharov - Yale University,
Titre Exposé annulé (Exponential volumes of moduli spaces of hyperbolic surface)
Date04/06/2024
Horaire14:00 à 15:00
Diffusion
Résume

Let S be a topological surface with holes. Let M (S, L) be the moduli space parametrising hyperbolic structures on S with geodesic boundary, and a given set L of lengths of the boundary circles. It carries the Weil-Peterson volume form. The volumes of the spaces M (S, L) are finite. Mirzakhani proved remarkable recursion formulas for them, related to several areas of Mathematics. However if S is a surface P with polygonal boundary, e.g. just a polygon, similar volumes are infinite. We consider a variant of these moduli spaces, and show that they carry a canonical exponential volume form. We prove that the exponential volumes are finite, and satisfies unf

Salle15–25.502
AdresseJussieu
© IMJ-PRG