Séminaires : Séminaire d'Algèbres d'Opérateurs

Equipe(s) : ao,
Responsables :Pierre Fima, François Le Maître, Romain Tessera
Email des responsables :
Salle : 1013
Adresse :Sophie Germain
Description

Orateur(s) Rémi Barritault - Université de Lyon,
Titre Dualité de Tannaka-Krein pour les groupes polonais Roelcke-precompacts non-Archimédiens
Date13/06/2024
Horaire14:00 à 15:00
Diffusion
Résume

Tannaka et Krein ont établi indépendamment autour de 1940 des résultats de dualité en analyse harmonique abstraite: La donnée des représentations unitaires d'un groupe compact permet de le reconstruire totalement. On peut voir ces résultats comme un analogue de la dualité de Pontryagin--van Kampen pour les groupes abéliens localement compacts.

Les groupes polonais Roelcke-precompact, issus de la logique, sont une surclasse des groupes compacts qui gardent de nombreuses propriétés dynamiques et géométriques de cette dernière. En particulier, dans le cas non-archimédiens, leur représentations unitaire ont été complètement classifiées sous une forme très proche du théorème de Peter-Weyl.

Après avoir donné une introduction sur les groupes polonais Roelcke-precompact non-archimédiens, j'expliquerai comment étendre les dualités de Tannaka et Krein à ce contexte. On obtient au passage deux réalisations de la compactification de Hilbert d'un tel groupe.

Salle1013
AdresseSophie Germain
© IMJ-PRG