Séminaires : Séminaire Théorie des Nombres

Equipe(s) : fa, tn, tga,
Responsables :Kęstutis Česnavičius, Marc Hindry, Wieslawa Nizioł, Cathy Swaenepoel
Email des responsables : cathy.swaenepoel@imj-prg.fr
Salle :
Adresse :
Description

http://www.imj-prg.fr/tn/STN/stnj.html

 


Orateur(s) Tess Bouis - University of Regensburg, Germany,
Titre Motivic cohomology of singular schemes
Date25/11/2024
Horaire14:00 à 15:00
Diffusion
Résume

I will present a new theory of motivic cohomology for general (qcqs) schemes, which generalises the construction of Elmanto-Morrow over a field. It is related to non-connective algebraic $K$-theory via  an Atiyah-Hirzebruch spectral sequence. In particular, it is non-$A^1$-invariant in general, but it  recovers classical motivic cohomology on smooth schemes over a field (by the work of Elmanto-Morrow) or over a Dedekind domain (by recent work in progress with Arnab Kundu). I will also discuss how one can import results from $p$-adic Hodge theory to study this theory of motivic cohomology.

Salle1016
AdresseSophie Germain
© IMJ-PRG