Kęstutis Česnavičius, Marc Hindry, Wieslawa Nizioł, Cathy Swaenepoel
Email des responsables :
cathy.swaenepoel@imj-prg.fr
Salle :
Adresse :
Description
http://www.imj-prg.fr/tn/STN/stnj.html
Orateur(s)
Zhenghui Li - IMJ-PRG,
Titre
Duality for Arithmetic $p$-adic Pro-etale Cohomology of Analytic Spaces
Date
10/03/2025
Horaire
14:00 à 15:00
Diffusion
Résume
Let $K$ be a finite extension of $\mathbb{Q}_p$. We prove that the arithmetic $p$-adic pro-etale cohomology of smooth partially proper spaces over $K$ satisfies a duality, as conjectured by Colmez-Gilles-Niziol. I will begin by providing some motivation for this question. Then I will explain how the cohomology is related to sheaves on the Fargues-Fontaine curve and how to deduce the result from the 'Poincare duality on the Fargues-Fontaine curve'.