Séminaires : Séminaire Théorie des Nombres

Equipe(s) : fa, tn, tga,
Responsables :Marc Hindry, Wieslawa Niziol, Cathy Swaenepoel
Email des responsables : cathy.swaenepoel@imj-prg.fr
Salle :
Adresse :
Description

http://www.imj-prg.fr/tn/STN/stnj.html

 


Orateur(s) Emanuel Reinecke - IHES,
Titre Poincare duality for proetale local systems in $p$-adic geometry
Date26/05/2025
Horaire14:00 à 15:00
Diffusion
Résume

The cohomology groups of proetale $\mathbf{Q}_p$-local systems on rigid-analytic varieties over $\mathbf{C}_p$ can be infinite-dimensional $\mathbf{Q}_p$-vector spaces even when the varieties are smooth and proper. Nevertheless, a recent result of Anschuetz-Le Bras-Mann shows that in the smooth and proper case they still have the structure of Banach-Colmez spaces and satisfy a version of Poincare duality. In my talk, I will discuss some background for this statement and then explain a different proof, which is essentially diagrammatic and follows a similar strategy as a previous argument in the case of $\mathbf{F}_p$-local systems. Joint work in progress with Shizhang Li, Wieslawa Niziol and Bogdan Zavyalov.

Salle1016
AdresseSophie Germain
© IMJ-PRG