Séminaires : Séminaire de Systèmes Dynamiques

Equipe(s) : gd,
Responsables :H. Eliasson, B. Fayad, R. Krikorian, P. Le Calvez
Email des responsables :
Salle : 15-25-502
Adresse :Campus Pierre et Marie Curie
Description

Archive avant 2015

Hébergé par le projet Géométrie et Dynamique de l’IMJ


Orateur(s) Yi Shi (Sichuan University) - Sichuan University,
Titre Lyapunov spectrum rigidity and simultaneous linearization of random Anosov diffeomorphisms
Date08/11/2024
Horaire14:00 à 16:00
Diffusion
Résume

Let f be a C^r Anosov diffeomorphism on T^2 and {f_1,...,f_k} be a family of C^r-random perturbations of f with r>2. We show that if the positive Lyapunov exponent of any stationary SRB measure of {f_1,...,f_k} is equal to the positive Lyapunov exponent of linearization A in GL(2,Z) of f, then the stable foliation of {f_1,...,f_k} are non-random and C^r-smooth. If we further assume the negative Lyapunov exponent of the stationary SRB measure also equals A, then there exists a smooth conjugacy h on T^2, such that h\circ f_i\circ h^{-1}=A+v_i for every i=1,...,k. The same result holds for random perturbations of generic hyperbolic automorphism A in GL(d,Z). This is a joint work with A. Brown.

Salle15-25-502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG