Responsable d’équipe : Pierre Berger
Responsables adjoints : Russel Avdek, Pierre-Antoine Guihéneuf
Gestionnaire : Julienne PASSAVE
Adresse postale :
| IMJ-PRG – UMR7586 Université Pierre et Marie Curie Boite courrier 247 Couloir 15-25 5e étage 4 place Jussieu, 75252 Paris Cedex 05 |
Programme
16h30 : présentation des nouveaux permanents
16h30 : Vadim Lebovici par Vincent Humilière
16h40 : Marco Mazzuchelli par Russel Avdek
16h50 : Hélène Eynard-Bontemps par Pierre-Antoine Guihéneuf
17h00-17h25 : Gurvan Mevel
Non-existence de morphismes séparants de bas degré
17h30-17h55 : Lukas Nakamura
The contact Hofer metric and skein-valued open Gromov-Witten invariant
18h00-18h30 : Yizhen Zhao
Open r-spin Theories and Categories of Matrix Factorizations
18h30-∞ : Pot convivial
L’après-midi de l’équipe aura lieu le 12/11/2024 en salle 15.16.413.
Programme :
15h00 – 17h30 : Exposés des nouveaux arrivants de l’équipe (titres et résumés plus bas)
15h00 – 15h40 : Russell Avdek
15h50 – 16h30 : Felipe Espreafico Guelerman Ramos
16h40 – 17h20 : Ioannis Iakovoglou
17h30 – 18h : Réunion de l’équipe
À partir de 18h00 : pot dans la salle 15.16.417
Résumés des exposés :
Russell Avdek
Title : Algebraic invariants of contact manifolds
Abstract : Contact manifolds appear naturally in complex geometry and smooth topology, and the talk will start with some famous examples. Afterwards, I’ll review some algebraic invariants of contact manifolds and discuss how they relate to known algebraic structures like loop space homologies and quantum knot invariants. Time permitting, I’ll summarize some of my related ongoing projects.
Felipe Espreafico Guelerman Ramos
Title : Counting Lines on Hypersurfaces: beyond real and complex counts
Abstract : Since our mathematical infancy, we learn that a complex cubic surfaces on the projective space have 27 lines. After that, we quickly learn how to get similar numbers for higher dimensional hypersurfaces. Using the machinery from $A^1$-homotopy theory, it is possible to compute counts for lines over a general field $k$ which are not integers, but quadratic forms. In these counts, each line contributes with a local index, which is given by a quadratic form. In this talk, we explain how to obtain such counts and explore the geometric nature of the local contributions. This is joint with Sabrina Pauli and Stephen McKean.
Ioannis Iakovoglou
Title : Classifying Anosov flows in dimension 3 by geometric types