CNRS Paris Diderot Sorbonne Université

Equipe Analyse Algébrique

Responsable d’équipe : Pierre Berger
Responsables adjoints : Russel Avdek, Pierre-Antoine Guihéneuf
Gestionnaire : Julienne PASSAVE

Adresse postale :

IMJ-PRG – UMR7586
Université Pierre et Marie Curie
Boite courrier 247
Couloir 15-25 5e étage
4 place Jussieu, 75252 Paris Cedex 05

Réunion d’équipe AA du 19/11/2025

Programme

16h30 : présentation des nouveaux permanents
16h30 : Vadim Lebovici par Vincent Humilière
16h40 : Marco Mazzuchelli par Russel Avdek
16h50 : Hélène Eynard-Bontemps par Pierre-Antoine Guihéneuf

17h00-17h25 : Gurvan Mevel
Non-existence de morphismes séparants de bas degré

17h30-17h55 : Lukas Nakamura
The contact Hofer metric and skein-valued open Gromov-Witten invariant

18h00-18h30 : Yizhen Zhao
Open r-spin Theories and Categories of Matrix Factorizations

18h30-∞ : Pot convivial


L’après-midi de l’équipe 12/11/2024

L’après-midi de l’équipe aura lieu le 12/11/2024 en salle 15.16.413.

Programme :

15h00 – 17h30 : Exposés des nouveaux arrivants de l’équipe (titres et résumés plus bas)

15h00 – 15h40 : Russell Avdek

15h50 – 16h30 : Felipe Espreafico Guelerman Ramos       

16h40 – 17h20 : Ioannis Iakovoglou

17h30 – 18h : Réunion de l’équipe

À partir de 18h00 : pot dans la salle 15.16.417

Résumés des exposés :

Russell Avdek

Title : Algebraic invariants of contact manifolds

Abstract : Contact manifolds appear naturally in complex geometry and smooth topology, and the talk will start with some famous examples. Afterwards, I’ll review some algebraic invariants of contact manifolds and discuss how they relate to known algebraic structures like loop space homologies and quantum knot invariants. Time permitting, I’ll summarize some of my related ongoing projects.

Felipe Espreafico Guelerman Ramos

Title :  Counting Lines on Hypersurfaces: beyond real and complex counts

Abstract :  Since our mathematical infancy, we learn that a complex cubic surfaces on the projective space have 27 lines. After that, we quickly learn how to get similar numbers for higher dimensional hypersurfaces. Using the machinery from $A^1$-homotopy theory, it is possible to compute counts for lines over a general field $k$ which are not integers, but quadratic forms. In these counts, each line contributes with a local index, which is given by a quadratic form. In this talk, we explain how to obtain such counts and explore the geometric nature of the local contributions. This is joint with Sabrina Pauli and Stephen McKean.

Ioannis Iakovoglou

Title : Classifying Anosov flows in dimension 3 by geometric types

Abstract : In this talk, I will introduce a new approach to the problem of classification of transitive Anosov flows in dimension 3 up to orbital equivalence. To every transitive Anosov flow on a 3-manifold, we can associate a group action on a bifoliated plane characterizing completely the original flow up to orbital equivalence. During my thesis, I proved that all the  information of the previous action can be stored inside a combinatorial object, called a geometric type, and thus that geometric types can be used to classify Anosov flows in dimension 3. In this  talk, I will explain how one constructs geometric types for any Anosov flow and I will also mention some recent applications of this classification method in the theory of Anosov flows.




© IMJ-PRG