Séminaires : Séminaire de géométrie algébrique

Equipe(s) : tga,
Responsables :
Email des responsables : frederic.han@imj-prg.fr
Salle : http://www.imj-prg.fr/tga/sem-ga
Adresse :
Description

La page officielle du Séminaire

Le jeudi à 14h.
septembre-décembre Sophie-Germain, janvier-mars ENS, avril-juin Jussieu

La liste de diffusion


Orateur(s) Melissa Liu - ,
Titre Remodeling Conjecture with descendants
Date12/06/2025
Horaire14:00 à 15:00
Diffusion
Résume

Abstract: The Remodeling Conjecture proposed by Bouchard-Klemm-Mariño-Pasquetti relates Gromov-Witten (GW) invariants counting holomorphic curves in a toric Calabi-Yau 3-manifold/3-orbifold to the Chekhov-Eynard-Orantin Topological Recursion (TR) invariants of a complex algebraic curve, the mirror curve of the toric Calabi-Yau 3-fold. In this talk, I will describe the Remodeling Conjecture with descendants, which is a correspondence between all-genus equivariant descendant GW invariants and oscillatory integrals (Laplace transforms) of TR invariants along relative 1-cycles on the equivariant mirror curve. Our genus-zero correspondence is a version of equivariant Hodge-theoretic mirror symmetry with integral structures. In the non-equivariant setting, we prove a conjecture of Hosono which equates quantum cohomology central charges of compactly supported coherent sheaves with period integrals of a holomorphic 3-form along integral 3-cycles on the Hori-Vafa mirror Calabi-Yau 3-fold. This talk is based on joint work with Bohan Fang, Song Yu, and Zhengyu Zong. 
 

Sallejussieu 15-25 502
AdresseCampus Pierre et Marie Curie
© IMJ-PRG