Séminaires : Séminaire de géométrie algébrique

Equipe(s) : tga,
Responsables :
Email des responsables :
Salle : http://www.imj-prg.fr/tga/sem-ga
Adresse :

La page officielle du Séminaire

Le jeudi à 14h.
septembre-décembre ENS, janvier-mars Jussieu, avril-juin Sophie-Germain

La liste de diffusion

Orateur(s) Georg Oberdieck - ,
Titre Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties
Horaire14:00 à 15:00
RésumeZOOM 811 7744 0900, pas de mot de passe mais salle d'attente. Abstract: Maulik and Pandharipande proved a relation between three different theories associated to a 1-parameter family of smooth K3 surfaces: (i) the Gromov-Witten invariants of the total space of the family in fiber classes (ii) the Noether-Lefschetz numbers of the family (iii) the (reduced) Gromov-Witten invariants of a fiber. A similar version holds for any family of holomorphic-symplectic varieties. In this talk I will explain what shape this relation takes for K3[2]-type, and what it implies for Noether-Lefschetz numbers of Debarre-Voisin fourfolds. In particular, this leads to a new proof (and strengthening) of a result of Debarre, Han, O’Grady and Voisin on the existence of HLS divisors on the moduli of DV fourfolds.